
Exposing iClass Key Diversification

Flavio D. Garcia Gerhard de Koning Gans Roel Verdult

Institute for Computing and Information Sciences
Radboud University Nijmegen, The Netherlands.

{flaviog,gkoningg,rverdult}@cs.ru.nl

Abstract
iClass is one of the most widely used contactless smartcards
on the market. It is used extensively in access control and
payment systems all over the world. This paper studies the
built-in key diversification algorithm of iClass. We reverse
engineered this key diversification algorithm by inspecting
the update card key messages sent by an iClass reader to the
card. This algorithm uses a combination of single DES and
a proprietary key fortification function called ‘hash0’. We
show that the function hash0 is not one-way nor collision
resistant. Moreover, we give the inverse function hash0−1

that outputs a modest amount (on average 4) of candid-
ate pre-images. Finally, we show that recovering an iClass
master key is not harder than a chosen plaintext attack on
single DES. Considering that there is only one master key
in all iClass readers, this enables an attacker to clone cards
and gain access to potentially any system using iClass.

1 Introduction
Over the last few years, much attention has been paid to
the (in)security of the cryptographic mechanisms used in
contactless smartcards [NESP08, GdKGM+08, GvRVS09,
COQ09,GvRVS10].

This paper does not focus on the security of the cards
themselves but on the security of the cryptographic proto-
cols used in the embedding systems. Concretely, we study
the key diversification and the proprietary ‘key fortification’
functions of the HID iClass contactless smartcards and the
secure key loading mode of the Omnikey readers.

iClass is an ISO/IEC 15693 [ISO09] compatible contact-
less smartcard manufactured by HID Global. It was intro-
duced on the market back in 2002 as a secure replacement
of the HID Prox card which had no cryptography at all. Ac-
cording to the manufacturer more than 300 million iClass
cards have been sold. These cards are widely used in access
control to secured buildings such as The Bank of America
Merrill Lynch, the International Airport of Mexico City and
the City of Los Angeles among many others1. According to

1http://hidglobal.com/mediacenter.php?cat2=2

HID [Cum06] iClass is also deployed at the United States
Navy base of Pearl Harbor. Other applications include se-
cure user authentication such as in the naviGO system in-
cluded in Dell’s Latitude and Precision laptops; e-payment
such as in the FreedomPay and SmartCentric systems; and
billing of electric vehicle charging such as in the Liberty
PlugIns system.

HID Global is also the manufacturer of the popular Om-
nikey readers. The Omnikey 5321 reader family is a multi-
protocol contactless reader which includes iClass compat-
ibility. Starting from firmware version 5.00 these read-
ers have the so-called ‘Omnikey Secure Mode’ which is
required to update iClass card keys. This Secure Mode
provides encryption of the USB traffic complying with
ISO/IEC 24727 [ISO08] standard.

1.1 Related Work

Experience has shown that, once obscurity has been cir-
cumvented, proprietary algorithms often do not provide a
satisfactory level of security. One of the most remark-
able examples of that is the infamous case of the Mifare
Classic [NESP08,GdKGM+08,GvRVS09] used widely in
access control and transport ticketing systems. Other ex-
amples include KeeLoq [IKD+08] and Hitag2 [SNC09],
which are widely used in wireless car keys and the
A5/1 [Gol97] and DECT [LST+09] ciphers used in cell and
cordless phones.

1.2 Our contribution

The contribution of this paper is manyfold. First it describes
the reverse engineering of the built-in key diversificational-
gorithm of iClass. This key diversification algorithm con-
sists of two parts: a cipher that is used to encrypt the iden-
tity of the card; and a key fortification function, called
hash0 in HID documentation, which is intended to add ex-
tra protection to the master key. Our approach for reverse
engineering is in line with that of [GdKGM+08, LST+09,
GvRVS10] and consists of analyzing the update card key
messages sent by an iClass compatible reader while we pro-
duce small modifications on the diversified key, just before

http://hidglobal.com/mediacenter.php?cat2=2

fortification. For this it was first necessary to bypass the
encryption layer of the Omnikey Secure Mode. We reverse
engineered the Omnikey Secure Mode and wrote a library
that is capable of communicating in Omnikey Secure Mode
to any Omnikey reader. To eavesdrop the contactless inter-
face we have built a custom firmware for the Proxmark III
in order to intercept ISO/IEC 15693 [ISO09] frames. We
have released the library, firmware and an implementation
of hash0 under the GNU General Public License and they
are available at the Proxmark website2.

Last but not least, we show that the key fortification func-
tion hash0 is actually not one-way nor collision resistant
and therefore it adds little protection to the master key.
Concretely, we give the inverse function hash0−1 that on
input a 64 bit bitstring it outputs a modest amount (on aver-
age 4) of candidate pre-images. We propose an attack that
recovers a master key from an iClass reader of comparable
complexity to that of breaking single DES, thus it can be
accomplished within a few days on a RIVYERA3. This is
extremely sensitive since there is only one master key for
all iClass readers and from which all diversified card keys
can be computed.

As an alternative, it is possible to emulate a predefined
card identity and use a DES rainbow table [Hel80] based on
this identity to perform the attack. This allows an adversary
to recover the master key within minutes.

During the course of this research, Meriac and Plötz
presented a powerful procedure to read out the EEPROM
of a PIC microcontroller, like the ones used in iClass read-
ers, at the 27th meeting of the Chaos Communication Con-
gress [MP10,Mer10]. This attack is possible due to a mis-
configuration of the memory access control bits of the PIC
used in early reader models, for more details on this attack
see the OpenPCD website4. Their attack on the hardware is
a viable alternative to retrieve the master key.

2 Omnikey Secure Mode
The Omnikey contactless smartcard reader has a range of
key slots where it stores cryptographic keys. These keys
are used to authenticate with an HID iClass card. After a
valid authentication the reader gains read and write access
to the memory in the card.

All recent Omnikey 5321 and 6321 contactless smartcard
readers manufactured by HID Global support encrypted
communication with the host, which is calledSecure Mode.
Applications compliant with ISO/IEC 24727 [ISO08] must
provide end-to-end encryption and therefore the USB com-
munication between the application and reader needs to be
encrypted.

To activate the Secure Mode, the host application uses
a 3DES key KCUW to perform mutual authentication

2http://www.proxmark.org
3http://www.sciengines.com
4http://www.openpcd.org/HID_iClass_demystified

with the reader. According to the Omnikey developers
guide [WDS+04] this key is only known by a limited group
of developers under a non-disclosure agreement with HID
Global.

The Omnikey Secure Mode must be active in order to
perform security sensitive operations like changing the key
of a card. In order to be able to eavesdrop and modify mes-
sages between the reader and a card during a key update,
the Omnikey Secure Mode must be circumvented.

The two-factor authentication application naviGO from
HID Global provides a login procedure for Windows com-
puters using an iClass card and a PIN-code. A trial version
of this software package is freely available online5. Nav-
iGO uses the Omnikey reader for the personalization phase
where it authenticates, updates the key and writes creden-
tials to an iClass card. To perform these actions naviGO
needs to know the cryptographic keyKCUW in order to use
the Secure Mode. HID Global stores the secret key in an
unprotected binary file. After extractingKCUW from the file
iCLASSCardLib.dll we gained full control over the
secured USB channel.

We have released a library callediClassifiedthat makes it
possible to send arbitrary commands to an Omnikey reader
using the Omnikey reader in Secure Mode.

3 iClass and PicoPass
The iClass card is basically a re-branded version of the Pi-
coPass contactless smartcard which is manufactured by In-
side Secure6. The documentation of the PicoPass [Con04]
defines the configuration options, commands and memory
structure of an iClass 2KS card. Before HID Global sells
the PicoPass as an iClass card, they configure the memory,
store their cryptographic keys and blow the fuse that allows
any future changes to the configuration.

Block Content Denoted by

0 Card serial number Identifier id

1 Configuration

2 e-Purse Card challengecC

3 Key for application 1 Debit keykdid

4 Key for application 2 Credit keykcid

5 Application issuer area

6. . . 18 Application 1 HID applicationaHID

19. . .n Application 2 n= 16x−1 for xKS

Figure 1: Memory layout of an iClass card

The iClass cards come in two versions 2KS and 16KS
with respectively 256 and 4096 bytes of memory. The
memory is divided into blocks of eight bytes as shown in
Figure1. Memory blocks 0, 1, 2 and 5 are publicly access-
ible, they contain the card serial numberid, configuration

5http://www.hidglobal.com/cardServices/
naviGoTrialDownloadForm.php

6http://www.insidesecure.com/eng/Products/
Secure-Solutions/PicoPass

http://www.proxmark.org
http://www.sciengines.com
http://www.openpcd.org/HID_iClass_demystified
http://www.hidglobal.com/cardServices/naviGoTrialDownloadForm.php
http://www.hidglobal.com/cardServices/naviGoTrialDownloadForm.php
http://www.insidesecure.com/eng/Products/Secure-Solutions/PicoPass
http://www.insidesecure.com/eng/Products/Secure-Solutions/PicoPass

bits, the card challengecC and issuer information. Block 3
and 4 contain two diversified cryptographic keys which are
derived from two different HID master keys. These master
keys are referred to in the documentation as debit keykd
and credit keykc. The card only stores the diversified keys
kdid andkcid . The remaining blocks are divided into two
areas so-called applications. The size of these applications
is defined by the configuration block.

The first application of an iClass card represents theHID
applicationwhich stores the identifier, PIN code, password
and other access control information. Read and write access
to the HID application requires a valid mutual authentica-
tion using a proprietary algorithm that proves knowledge of
kdid .

The second application is user defined and secured by a
key kcid derived fromkc. The defaultkc (but notkd) is
stored in the same binary file that contains the secret key
for the Omnikey Secure Mode. We use this key later on
Section4.1during the reverse engineering process.

We use ouriClassified library to eavesdrop the USB
communication while the card key is updated. We ob-
serve that a default iClass master key is loaded into key
slot 32 of the reader. This key is used to derive the card
key which is used for authentication. Then, a new mas-
ter key is loaded into slot 32 and the card key is updated
with the new derived key. Figure2 shows the eavesdropped
messages between the reader and a card during a sequence
of card key update commands. The application first up-
dates the default keykc of an genuine iClass card to ran-
dom kc′ and kc′′. Finally it sets the default key again.
The trace shows that the key update message contains as
payload the exclusive-or (XOR) of the old and new key
as mentioned in [MP10]. This can be verified computing
(kc′id ⊕ kcid)⊕ (kc′′id ⊕ kc′id) = kcid ⊕ kc′′id .

3.1 Authentication and Key Fortification

This section describes the authentication protocol between
an iClass card and reader. Furthermore, it gives an overview
of the built-in key diversification algorithm.

The authentication protocol between an iClass card and
a reader is depicted in Figure3. First, the card sends its
identity id and a card challengecC. This cC is called ‘e-
purse’ [Con04] and it is special in the sense that it is in-
tended to provide freshness. Apparently, the card lacks a
pseudo-random generator and therefore, after a successful
authentication, the reader should updatecC to a new value
in order to provide freshness in the next authentication.
Note that this is not enforced by the card. Next, the reader
answers with a noncenR of its choosing and an answeraR

to the challenge of the card. This answer is presumable
some sort of MAC depending oncC andnR. Finally, the
card answers with a similar messageaC to achieve mutual
authentication.

iClass has a built-in key diversification algorithm. Fig-
ure4 is extracted from the PicoPass datasheet [Con04]. It

id,cC
←−−−−−−−−−−−

nR,aR
−−−−−−−−−−−→

aC
←−−−−−−−−−−−

Figure 3: Authentication protocol

suggests that the reader encrypts the card identity (id) us-
ing single DES. Then it performs a fortification algorithm
to obtain the diversified key. The following steps verify that
the card identity is the only input to the DES algorithm:

• start with any 64 bit bitstringc, e.g., all zeros
• choose a random keyk and use DES to decryptc. This

results in a plaintextp
• choose a different keyk′ and use DES to decryptc.

This results in a plaintextp′

• run a card key update withk with a reader that receives
identity p from a card emulator. Repeat this using key
k′ and identityp′ and verify that the derived keykp is
equal tok′p′ .

Key fortification functions are non-injective functions
(many-to-one) which, in contrast with hash functions, in-
tentionally have many collisions [AL94]. The idea behind
it is that even if an adversary has access to many diversi-
fied keys, these do not univocally determine a master key.
This comes, of course, at the cost of loosing entropy in the
diversified key.

In practice, it means that even if you manage to invert
the fortification function, you will get many candidate pre-
images which in turn you need to brute force to get to the
master secret key.

Figure 4: Extracted from the PicoPass datasheet [Con04]

4 Reverse Engineering Key Fortification
This section describes the reverse engineering of the key
fortification function. The design of this function, called
h0 [Cum03] or hash0 [Cum06], is not publicly available.
Our primary goal is to learn the card key derivation which
gives complete control over the card key. In order to reach
this goal it is necessary to reverse engineer the fortification
function.

As explained in Section3.1 the input to the key diversi-
fication is a master secret key (e.g.,kc or kd) and a card
identity id. From this key, saykc, and id a ciphertext
c= DESenc(id,kc) is computed. Finally, the actual diversi-
fied keykcid is computed hash0(c) = kcid .

Origin Message Description

Reader 0c 00 73 33 Read identifier
Tag 86 1d c1 00 f7 ff 12 e0 Card serial numberid
Reader 0c 01 fa 22 Read configuration
Tag 12 ff ff ff 7f 1f ff 3c iClass 2KS configuration
Reader 18 02 Authenticate withkcid
Tag fe ff ff ff ff ff ff ff Card challengecC
Reader 05 00 00 c1 d9 7e 99 bb f4 Reader challenge (05, nR, aR)
Tag 46 3c 62 98 Response (aC)
Reader 87 04 fc b4 32 3e 6a 86 56 26 8a b5 18 cc Updatekcid (8704, kc′id ⊕ kcid , 8ab518cc)
Tag ff ff ff ff ff ff ff ff Update succesful
Reader 0c 00 73 33 Readid

. . .

Reader 87 04 76 98 db 5d 01 78 0a 8f 67 25 c1 08 Updatekcid (8704, kc′′id ⊕ kc′id , 6725c108)
. . .

Reader 87 04 8a 2c e9 63 6b fe 5c a9 e2 a5 bc 55 Updatekcid (8704, kcid ⊕ kc′′id , e2a5bc55)

Figure 2: Authenticate and update keys of an iClass card

4.1 Input-Output Relations

A good first step to recover hash0 is to analyze its input-
output relations on bit level. This requires complete control
over its inputc which can be achieved in a test setup by the
emulation of a card identityid knowing the master keykc.

The following steps deliver XOR differences between
two hash0 evaluations that differ only one bit in the input:
• generate a large set of random bitstringsci ∈ {0,1}64.
• for eachci calculateidi = DESdec(ci ,kc) and id j

i =
DESdec(ci ⊕ 2 j ,kc) for j ∈ {0, . . . ,63}.
• for eachci execute 64 key updates as follows:

– authenticate withidi

– perform a key update, the reader requests the
card identity again, now useid j

i instead ofidi

Keep the keykc constant during the key updates described
above. This delivers the XOR of two function evaluations
of the form hash0(ci) ⊕ hash0(ci ⊕ 2 j). We performed
this procedure for 3000 valuesci with j ∈ {0, . . . ,63}. The
results are grouped by the position of the flipped bit. Then,
the AND and OR is computed of all the results in a group.
These cumulative AND and OR-masks for 64 bitflips in
3000 random bitstringsci are presented in Figure6 and9.

4.2 Function Input Partitioning

Figure6 shows that the hash0 function handles the 48 right-
most bits in smaller 6-bit pieces. These 6-bit data chunks
are defined asz0, . . . ,z7. The two bytes on the left are
definedx andy. Herex defines a permutation on the output
and the individual bits ofy define whether or not a comple-
ment operation is applied on one of the 6-bit output values.
The eight output bytes are defined ask0, . . . ,k7 and consti-
tute the diversified keykcid . Similarly, the inputc to the
hash0 function is constituted byc= 〈x,y,z0, . . . ,z7〉.

For the ease of reading we writex[b] to denote theb-th bit
of variablex wherex[0] means the rightmost bit ofx.

The structure of the masks in Figure6 and9 are com-
puted withx = y = 0 andz0, . . . ,z7 as random bitstrings.
The masks lead to the following observations:

• z0, . . . ,z3 affectsk4, . . . ,k7.
• z4, . . . ,z7 affectsk0, . . . ,k3.
• z0, . . . ,z3 andz4, . . . ,z7 generate a similar structure in

the output but are mutually independent. This suggests
that there is a subfunction that is called twice, once
with z0, . . . ,z3 and once withz4, . . . ,z7. In the context
of this paper we refer to this function as scramble.
• y[i] affectski for i ∈ {0, . . . ,7}. The OR-mask fory in-

dicates a complement operation on the output while
the AND-mask presumes an injective function that
mapsy[i] to ki[7].
• x creates a permutation. The output is scrambled after

flipping a single bit withinx. The AND-mask shows
thatki[0] is exclusively affected byx for i ∈ {0, . . . ,7}.
• flipping bits inz0, . . . ,z7 does never affect the left- or

rightmost bits ofk0, . . . ,k7. This is inferred from the
occurrences of the0x7e value in the OR-mask which
is 01111110 in binary.

x y

k1 k2 k3 k7k4 k6k5k0

z 0z 1z 2z 3z 4z 5z 6z 7

x y z 0 z 1 z 2 z 3 z 4 z 5 z 6 z 7

{ { { { { { { {

Figure 5: Partitioned Function Input forx= 0

The above observations suggest that the problem of func-
tion recovery can be split into parts. Figure5 summarizes
how different parts of the input affect specific parts of the
output whenx is kept zero. Note that the last observation
shows that the subfunction scramble operates on four 6-bit
input values and computes four 6-bit output values. These
output values constitute the middle 6 bits of output byteski ,
see Figure5. Furthermore, it is observed that the ordering
of the 6-bit output values and the leftmost bit of the output
bytes are determined byx. Each bit ofy is simply copied
into the rightmost bit of each output byte.

Summarizing, the hash0 function can be split into three
different parts. The first part is the subfunction scramble
which is called twice, once with inputz0, . . . ,z3 and once
with input z4, . . . ,z7. The second part computes a bitwise
complement operation based on thecomplementbytey and
the last part applies a permutation that is defined by theper-
mutebytex. The following sections discuss these different
parts of the hash0 function. Finally, Section4.6defines the
complete function.

bit OR-mask AND-mask

⊕→ k0k1k2k3k4k5k6k7 k0k1k2k3k4k5k6k7

z7







































0 7e7e7e7e00000000 0400000000000000

1 7e7e7e7e00000000 0400000000000000

2 7a7e7e7e00000000 0800000000000000

3 727e7e7e00000000 1000000000000000

4 627e7e7e00000000 2000000000000000

5 427e7e7e00000000 4000000000000000

z6











6 007e7e7e00000000 0000000000000000

.

11 007e7e7e00000000 0000000000000000

z5











12 00007e7e00000000 0000000000000000

.

17 00007e7e00000000 0000000000000000

z4











18 0000007e00000000 0000000000000000

.

23 0000007e00000000 0000000000000000

z3







































24 00000000027e7e7e 0000000002000000

25 00000000047e7e7e 0000000004000000

26 00000000087e7e7e 0000000008000000

27 00000000107e7e7e 0000000010000000

28 00000000207e7e7e 0000000020000000

29 00000000407e7e7e 0000000040000000

z2











30 00000000007e7e7e 0000000000000000

.

35 00000000007e7e7e 0000000000000000

z1











36 0000000000007e7e 0000000000000000

.

41 0000000000007e7e 0000000000000000

z0











42 000000000000007e 0000000000000000

.

47 000000000000007e 0000000000000000

Figure 6: OR and AND-mask for bitflip 0-47

4.3 Subfunction scramble

This section describes the reverse engineering of the sub-
function scramble which operates on four 6-bit input val-
uesz0, . . . ,z3. In order to recover this part of the function
we keepx= y= 0 whilez0, . . . ,z7 are randomly chosen. For
the scramble subfunction only bitflips at positions 0 to 47
matter (see Figure6). It makes sense to start with the recov-
ery of eitherk0 or k4 as they both depend on a single input
zi . Notice thatk4 is justz3 shifted one bit to the left since we
keepx = y = 0. However,k0 seems less predictable. The
XOR between two outputski ⊕ k′i of two function calls is
defined ask⊕i . Furthermore, be aware that the subfunction
scramble only affects bitski[1], . . . ,ki[6] (See Fig5). To put
it differently, the output isalwaysshifted one bit to the left
and therefore this shift can be omitted from the analysis.

In order to find a relation between input valuesz7 and
output valuesk⊕0 a selection of all observed valuesk⊕0 is
made. Figure7 shows a relation betweenz7 andk⊕0 and
shows which bits ofz7 are fixed for a certain output value
k⊕0 . Bits that do not matter are marked with a dot and the
bitflip is markedf. The two inputs arez7 wheref = 0 and
z′7 wheref = 1.

z7/z′7 k⊕0 z7/z′7 k⊕0
....0f 06f0 04

...01f 0e ...0f1 0c

..011f 1e ..01f1 1c

.0111f 3e .011f1 3c

11111f 7c 0111f1 7c

01111f 7e 1111f1 7e

Figure 7: Input-output relations fork⊕0
The relation is represented for every two inputsz7 andz′7
ask⊕0[1..6] = (z7 mod 63)+1⊕ (z′7 mod 63)+1 which gives

confidence thatk0[1..6] = (z7 mod 63)+1. The next step is
to findk1[1..6] which is dependent on two input input values,
namelyz6 andz7. Again, an overview of all input-output
relations (Figure8) is constructed. The first part where
k⊕1 ∈ {02,0c,52,6c, . . .} is the result of flippingz6[0] and
the second part wherek⊕1 ∈ {0c,1c,3c, . . . ,4e,64, . . .} is
the result of flippingz6[1].

The observations for flippingz6[0] andz6[1] show that in
97 % of the cases inputz6 andz7 are independent. 3 % of the
bitflips in z6 makez6+1 equal toz7 or destroy this equality
instead.

% z6/z′6 z7 k⊕1
0.97f 02































bitflip z6[0]0.03























00010f 000101 0c

10011f 101000 52

11001f 110100 6c

.....f

0.97































....f. 0c


















































































bitflip z6[1]

...1f. 1c

.011f. 3c

1111f. 78

0111f. 7c

0.03































0010f0 001001 1a

0110f0 011001 3a

1001f0 100111 4e

1100f1 110100 64

....f.

Figure 8: Input-output relations fork⊕1

When z6[1] is flipped more output variations ink⊕1 are
observed. Example fork⊕1 = 0x3c:

z6 = 001101, z6+2 = .001111.

z′6 = 001111, z′6+2 = .010001. ⊕

00111100= 0x3c

The resultk⊕1 = 78 comes from a modulo operation. Here
input z6 is taken modulo 62, which is111110 in binary.
Example fork⊕1 = 0x78:

z6 = 111100, (z6 mod 62)+2 = .111110.

z′6 = 111110, (z′6 mod 62)+2 = .000010. ⊕

01111000= 0x78

Then, 3 % of the output variations invoked by bitflips in
z6[1] describe a relationz6+1= z7. The correspondingk⊕1
is obtained by takingk1[1..6]= 1 when the relation holds and
k1[1..6] = (z6 mod 62)+2 when it does not hold. Example
for k⊕1 = 0x4e:

z6 = 100100, (z6 mod 62)+2 = .100110.

z′6 = 100110, ((z′6 mod 62)+1= n7) = .000001. ⊕

01001110= 0x4e

Eventually, the function fork1[1..6] is:

k1[1..6]=

{

1, (z6 mod 62)+1= (z7 mod 63);

(z6 mod 62)+2, otherwise.

The remainingk2[1..6] and k3[1..6] can be found in a sim-
ilar way by flipping bits in the input and closely looking
at the input-output relations. Also, it helps to look for re-
lated modulo operations onz5 andz4. We givek2[1..6] to
give some idea of the evolving structure of the function:

k2[1..6]=











































2, (z5 mod 61)+1= (z6 mod 62);

∧ (z7 mod 63) 6= 0;

1, (z5 mod 61)+1= (z6 mod 62)

∧ (z7 mod 63) = 0;

1, (z5 mod 61)+2= (z7 mod 63);

(z5 mod 61)+3, otherwise.

After the recovery of the first blockz4, . . . ,z7 it is relatively
easy to find the subfunction forz0, . . . ,z3. The modulos
and additions differ but the structure of the function is com-
pletely the same. For this reason it is possible to write it asa
subfunction scramble that is called twice, once forz0, . . . ,z3

and once forz4, . . . ,z7. The final subfunction scramble is
given by Definition4.1.

4.4 Complement Byte

The complement bytey performs a complement operation
on the output of the function. Figure9 shows that flipping
a bity[i] means that bitki[7] is flipped fori ∈ {0, . . . ,7}. No-
tice that no other input bit influences anyki[7]. Furthermore,
ki[1], . . . ,ki[6] are flipped but be aware that these bits might
come from any otherzj due to the permute bytex. Finally,
everyki[0] is not affected. It is important to observe that for
k4, . . . ,k7 the OR and AND-mask agree that the left 7 bits
are always flipped while fork0, . . . ,k3 this is not true. To be
precise, the bitsk0[1],k1[1],k2[1] andk3[1] areneverflipped.
This is because the 6-bit output valuezj that constitutes out-
put byteki is decremented by one ifj ≤ 3 except when

bit OR-mask AND-mask

⊕→ k0k1k2k3k4k5k6k7 k0k1k2k3k4k5k6k7

y



























































48 fc00000000000000 8000000000000000

49 00fc000000000000 0080000000000000

50 0000fc0000000000 0000800000000000

51 000000fc00000000 0000008000000000

52 00000000fe000000 00000000fe000000

53 0000000000fe0000 0000000000fe0000

54 000000000000fe00 000000000000fe00

55 00000000000000fe 00000000000000fe

x



























































56 7f7f7f7e7e7f7f7f 0101010000010101

57 00007f7e7f000000 0000010001000000

58 7f7e7e7e7f000000 0100000001000000

59 7f7e7e7e7e7f0000 0100000000010000

60 00007f7e7e7e7f00 0000010000000100

61 7f7e7f7f7f7f7f00 0100010101010100

62 7f7e7f7e7e7f7f00 0100010000010100

63 7f7e7f7e7f7e7f00 0100010001000100

Figure 9: OR and AND-mask for bitflip 48-63

π = [
01234567, 35670124, 01342567, 15670234, 12340567,
34670125, 01352467, 14670235, 12350467, 23670145,
02451367, 12670345, 12450367, 02671345, 23450167,
34570126, 01362457, 14570236, 12360457, 23570146,
02461357, 03571246, 03461257, 02571346, 23460157,
23470156, 02561347, 03471256, 03561247, 02471356,
23560147, 12370456, 14560237, 01372456, 34560127,
45670123, 01243567, 25670134, 02341567, 05671234,
01253467, 24670135, 02351467, 04671235, 01452367,
13670245, 03451267, 03671245, 13450267, 01672345,
01263457, 24570136, 02361457, 04571236, 01462357,
13570246, 12460357, 12570346, 13460257, 01572346,
01562347, 13470256, 12560347, 12470356, 13560247,
01472356, 04561237, 02371456, 24560137, 01273456]

Figure 10: Permutationπ

y[i] = 0. Example fork⊕0 = 0xfc:

zj = 101101, where j ≤ 3

y0 = 0, k0 = y0 ·zj · t = 0101101t

y′0 = 1, k′0 = y′0 ·zj −1 · t = 1010011t ⊕

11111100= 0xfc

4.5 Permute Byte

Finally, bytex applies a permutation. Iterating overx while
keepingy andz0, . . . ,z7 constant shows thatx is taken mod-
ulo 70 since the same output is repeated again for every 70
consecutive inputs. The cumulative bitmasks of the output
differences, shown in Figure9, do not give direct inform-
ation about this permutation but do make clear thatki[0] is
affected. Experiments show thatx is an injective mapping
on ki[0] for i = 0, . . . ,7. This means that it is possible to
learn x from ki[0]. Furthermore, the permutation is inde-
pendent ofy andzi . This means that a table of mappings
can be constructed which takesx as index and has particu-
lar mappings as its entries. The mappings are presented in
Figure10. To illustrate,π0 = 01234567 means that there is
no mixing at all andπ2 = 01342567 means thatk0 stays at
position 0 whilek4 is moved to position 2. To isolate one
particular mapping we writeπx(i) which returns the target
position of 6-bit output value ˆzi .

4.6 Diversification and Fortification

This section describes the recovered key diversification and
fortification procedure. Definition4.2 gives the definition
of the function hash0. It uses a subfunction scramble which
is defined by Definition4.1. First, the key diversification
procedure where a diversified keykcid is computed from a
card identityid and master keykc is as follows:

kcid = hash0(DESenc(id,kc))

Here the DES encryption ofid with master keykc out-
puts a cryptogramc of 64 bits. These 64 bits are divided as
c= 〈x,y,z0, . . . ,z7〉 ∈ F

8
2×F

8
2× (F6

2)
8 and used as input to

the hash0 function. Finally, the output of the hash0 function
is kcid = 〈k0, . . . ,k7〉 ∈ (F8

2)
8.

The function hash0 first computesx′ = x mod 70 which
results in 70 possible permutations (See Fig.10). Then for
all zi the modulus and additions are computed before calling
the subfunction scramble.

Then, the subfunction scramble is called twice, first on
input z′0, . . . ,z

′
3 and then on inputz′4, . . . ,z

′
7. The definition

of the function scramble is as follows.

Definition 4.1. Let the function scramble: (F6
2)

4→ (F6
2)

4

be defined as

scramble(z0 . . .z3) = sc(0,1,z0 . . .z3)

where sc: N×N× (F6
2)

4→ (F6
2)

4 is defined as

sc(2,4,z0 . . .z3) = z0 . . .z3

sc(i,4,z0 . . .z3) = sc(i +1, i +2,z0. . .z3)

sc(i, j,z0 . . .z3) =
{

sc(i, j +1,z0..zi ← (3− j)..z3), zi = zj ;

sc(i, j +1,z0 . . .z3), otherwise.

After this a permutation is applied to the output bytes. The
definition of hash0 is as follows.

Definition 4.2. Let the function hash0: F8
2×F

8
2× (F6

2)
8→

(F8
2)

8 be defined as

hash0(x,y,z0 . . .z7) = k0 . . .k7

where

x′ = x mod 70

z′i = (zi mod 61+ i)+3− i i = 0. . .3

z′i = (zi mod 56+ i)+7− i i = 4. . .7

ẑ0 . . . ẑ3 = scramble(z′0 . . .z
′
3)

ż4 . . . ż7 = scramble(z′4 . . .z
′
7)

ẑi = żi + y[πx′(7−i)] i = 4. . .7

kπx′ (i)
=

{

y[πx′ (i)]
· ẑ7−i · (i > 3), y[πx′ (i)]

= 0;

y[πx′ (i)]
· ẑ7−i · (i > 3), otherwise.

i = 0. . .7

5 Weaknesses

This section describes weaknesses in the design of the Om-
nikey Secure Mode and on the iClass built-in key diversi-
fication and fortification algorithms. These weaknesses will
be later exploited in Section6.

5.1 Omnikey Secure Mode

Even though encrypting the communication over USB is
in principle a good practice, the way it is implemented in
the Omnikey Secure Mode adds very little security. The
shared keykCUW is the same for all Omnikey readers and
it is included in software that is publicly available online.
This only gives a false feeling of added security.

5.2 Weak key diversification algorithm

iClass uses single DES encryption for key diversification.
This provides very weak protection of the master key. This
is a critical weakness, especially considering that there is
only one master key for the HID application for all iClass
cards.

The manufacturer seems to be aware of this weakness
and tries to tackle the problem by adding the key fortifica-
tion function.

This comes at the price of loosing entropy on the diver-
sified card keys. After the DES computation the diversified
64-bit card key have at most 56 bit of entropy. Then, this
key is put through the fortification function where it looses
another 2.2 bits of entropy. In the next section, we explain
where these 2.2 bits come from and discuss the security
properties of the fortification function.

5.3 Weak key fortification

This section clarifies why the key fortification is not
strengthening the diversified keykcid . First, note that
only the modulo operations in hash0 onx (256

70) and
z0, . . . ,z2,z4, . . . ,z7 are responsible for the collisions in the
output. The expected number of pre-images for an output
of hash0 is given by:

256
70
×

64
60
×

63

∏
n=61

(

64
n

)2

≈ 4.72

These modulo operations make inverting the function
straightforward. For every pre-image one needs to determ-
ine if there exists another value within the input domain that
leads to the same output when the modulus is taken. Note
that each input valuezi may have a second pre-image that
maps to the same output value. Furthermore, every permute
bytexhas at least two other values that map to the same out-
put value and in some cases there is even a third one. This
means that the minimal number of pre-images is three. The
probabilityp that for a given random inputc there are only
two other pre-images is:

p=
24
70
×

60
64
×

63

∏
n=61

(n
64

)2
≈ 0.27

This means that hash0 does not add that much of addi-
tional protection. For example, imagine an attacker who
can learn the outputkcid of hash0(DESenc(id,kc)) for ar-
bitrary valuesid. Then, the probabilityp′ for an attacker
to obtain an outputkcid which has only three pre-images
is p′ = 1− (1− p)n, wheren is the number of function
calls using random identitiesid. For n = 15 this probab-
ility p′ > 0.99.

5.4 Inverting hash0

It is relatively easy to compute the inverse of the function
hash0. Let us first compute the inverse of the function
scramble. Observe that the function scramble−1 is defined
just as scramble except for one case where the condition
and assignment are swapped. Concretely,
Definition 5.1. Let the function scramble−1 : (F6

2)
4 →

(F6
2)

4 be defined just as scramble(z0 . . .z3) except for the
following case where

sc−1(i, j,z0 . . .z3) =
{

sc−1(i, j +1,z0..zi ← zj ..z3), zi = 3− j;

sc−1(i, j +1,z0 . . .z3), otherwise.

Next, we define the function hash0−1, the inverse of
hash0. This function outputs a setC of candidate pre-
images. These pre-images output the same keyk when ap-
plying hash0. The definition of hash0−1 is as follows.
Definition 5.2. Let the function hash0−1 : (F8

2)
8→ {F8

2×
F

8
2× (F6

2)
8} be defined as

hash0−1(k0 . . .k7) = C

where

C ={x|x≡ x′ mod 70}×{y}×

{z0|z0≡ z̃0 mod 61}×{z1|z1 ≡ z̃1 mod 62}×

{z2|z2≡ z̃2 mod 63}×{z3|z3 ≡ z̃3 mod 64}×

{z4|z4≡ z̃4 mod 60}×{z5|z5 ≡ z̃5 mod 61}×

{z6|z6≡ z̃6 mod 62}×{z7|z7 ≡ z̃7 mod 63}

x′ is the unique element inF8
2 s.t. (πx′(i)> 3)⇔ (ki[7] = 1),

for i = 0. . .7.

y[i] = kπx′ (i)[0]
i = 0. . .7

z̃i = z′i− (3− (i mod 4)) i = 0. . .7

z′0 . . .z
′
3 = scramble−1(ẑ0 . . . ẑ3)

z′4 . . .z
′
7 = scramble−1(ż4 . . . ż7)

ż[i] = ẑ[i]− y[πx′ (7−i)] i = 4. . .7

ẑi =

{

kπx′ (7−i)[1...6], y[πx′ (7−i)] = 0;

kπx′ (7−i)[1...6], otherwise. i= 0. . .7

6 Key recovery attack
From the weaknesses that were explained in the previous
section it can be concluded that hash0 does not signific-
antly increase the complexity of an attack on the master

key kc. In fact, the attack explained in this section requires
one brute force run on DES. For this key recovery attack
an attacker needs to control a reader and be able to issue
key update commands. This is the case, for example, in the
Omnikey Secure Mode. The attack consists of two phases:

Phase 1

• emulate a random identityid to the reader
• issue an update key command that updates from a

known user defined keykc′ to the unknown master
keykc. Now, idkc = hash0(DESenc(id,kc)) can be ob-
tained from the XOR difference.
• compute the pre-imagesci of idkc.
• repeat Phase 1 until an outputidkc is obtained which

has three pre-images.

Phase 2

• for every candidate keykt ∈ {0,1}56 check if
DESenc(id,kt) = ci for i ∈ {0,1,2}
• when the check above succeeds the corresponding key

kt needs to be verified against another set ofid and
kcid .

We verified this attack on the two master keyskcandkd that
are stored in the Omnikey reader for the iClass application.
The first keykc was also stored in the naviGO software
and we could check the key against pre-images that were
selected as described above. Although we did not findkd
stored in software we were still able to verify it since we
could dump the EEPROM of a reader wherekd was stored.

The attack above comes down to a brute force attack on
single DES. A slightly different variant is to keep the card
identity id fixed and use a DES rainbow table [Hel80] that
is constructed for a specific plaintext and runs through all
possible encryptions of this plaintext. Note that the rainbow
table needs to be pre-computed and thus a fixed plaintext is
chosen on forehand. This means that one fixed predefined
id is to be used in the attack. The number of pre-images
can no longer be controlled. In the worst case the number
of pre-images is 512.

7 Conclusions

In this paper we have shown that obscurity does not provide
extra security and it can be circumvented. In fact, exper-
ience shows that instead of adding extra security it often
covers for negligent designs.

It is hard to imagine why HID decided, back in 2002, to
use single DES for key diversification considering that DES
was already broken in practice in 1997 [Fou98]. Especially
when most (if not all) HID readers are capable of comput-
ing 3DES. Another unfortunate choice was to design their
proprietary hash0 function instead of using an openly de-
signed and community reviewed hash function like SHA-1.
From a cryptographic perspective, their proprietary func-
tion hash0 fails to achieve any desirable security goal.

References

[AL94] RJ Anderson and TMA Lomas. Fortify-
ing key negotiation schemes with poorly
chosen passwords. Electronics letters,
30(13):1040–1041, 1994.

[Con04] Inside Contactless. Datasheet PicoPass
2KS. Technical report, November 2004.

[COQ09] Nicolas T. Courtois, Sean O’Neil, and Jean-
Jacques Quisquater. Practical Algebraic
Attacks on the Hitag2 Stream Cipher. In
Information Security, volume 5735 ofLec-
ture Notes in Computer Science, pages
167–176. Springer, 2009.

[Cum03] Nathan Cummings. iCLASS Levels of Se-
curity. Technical report, April 2003.

[Cum06] Nathan Cummings. Sales Training.
Presentation Slides from HID Technolo-
gies, 2006.

[Fou98] Electronic Frontier Foundation.Crack-
ing DES: Secrets of Encryption Research,
Wiretap Politics and Chip Design. O’Reilly
& Associates, Inc., Sebastopol, CA, USA,
1998.

[GdKGM+08] Flavio D. Garcia, Gerhard de Koning Gans,
Ruben Muijrers, Peter van Rossum, Roel
Verdult, Ronny Wichers Schreur, and Bart
Jacobs. Dismantling Mifare Classic.
In Computer Security - ESORICS 2008,
volume 5283 ofLecture Notes in Computer
Science, pages 97–114. Springer, 2008.

[Gol97] Jovan Dj. Golic. Cryptanalysis of Alleged
A5 Stream Cipher. InEUROCRYPT 1997,
volume 1233 ofLecture Notes in Computer
Science, pages 239–255, 1997.

[GvRVS09] Flavio D. Garcia, Peter van Rossum, Roel
Verdult, and Ronny Wichers Schreur. Wire-
lessly pickpocketing a Mifare Classic card.
In Proceedings of the 2009 IEEE Sym-
posium on Security and Privacy, pages 3–
15. IEEE, 2009.

[GvRVS10] Flavio D. Garcia, Peter van Rossum, Roel
Verdult, and Ronny Wichers Schreur. Dis-
mantling SecureMemory, CryptoMemory
and CryptoRF. In17th ACM Conference on
Computer and Communications Security
(CCS 2010), pages 250–259. ACM, 2010.

[Hel80] M. Hellman. A cryptanalytic time-memory
trade-off.Information Theory, IEEE Trans-
actions on, 26(4):401–406, 1980.

[IKD +08] Sebastiaan Indesteege, Nathan Keller, Orr
Dunkelmann, Eli Biham, and Bart Pren-
eel. A Practical Attack on KeeLoq. InAd-
vances in Cryptology - EUROCRYPT 2008,
volume 4965 ofLecture Notes in Computer
Science, pages 1–8. Springer, 2008.

[ISO08] ISO/IEC. 24727 - Identification Cards –
Integrated Circuit Card Programming Inter-
faces. Technical report, 2008.

[ISO09] ISO/IEC. 15693 - Identification cards –
Contactless integrated circuit cards – Vicin-
ity cards. Technical report, 2009.

[LST+09] S. Lucks, A. Schuler, E. Tews, R.P. Wein-
mann, and M. Wenzel. Attacks on the
DECT authentication mechanisms.Topics
in Cryptology–CT-RSA 2009, pages 48–65,
2009.

[Mer10] Milosch Meriac. Heart of darkness
- exploring the uncharted backwa-
ters of hid iclass security. http://
www.openpcd.org/images/
HID-iCLASS-security.pdf, 2010.

[MP10] Milosch Meriac and Henryk Plötz. Analyz-
ing a modern cryptographic RFID system
HID iClass demystified. Presentation at the
27th Chaos Computer Congress, December
2010.

[NESP08] Karsten Nohl, David Evans, Starbug, and
Henryk Plötz. Reverse Engineering a Cryp-
tographic RFID Tag. InUSENIX Security
’08, pages 185–193, 2008.

[SNC09] Mate Soos, Karsten Nohl, and Claude Cas-
telluccia. Extending SAT Solvers to Cryp-
tographic Problems. In Oliver Kullmann,
editor, Theory and Applications of Satis-
fiability Testing - SAT 2009, volume 5584
of Lecture Notes in Computer Science,
pages 244–257. Springer Berlin / Heidel-
berg, 2009.

[WDS+04] Werner Waitz, L Dixon, S Schwab,
L Hanna, T Muth, Marc Jacquinot, and Abu
Ismail. OMNIKEY Contactless Smart Card
Readers Developers Guide. Technical re-
port, November 2004.

http://www.openpcd.org/images/HID-iCLASS-security.pdf
http://www.openpcd.org/images/HID-iCLASS-security.pdf
http://www.openpcd.org/images/HID-iCLASS-security.pdf

