
Towards a Practical Solution to the RFID

Desynchronization Problem�

Gerhard de Koning Gans and Flavio D. Garcia

Institute for Computing and Information Sciences
Radboud University Nijmegen

P.O. Box 9010, 6500 GL
Nijmegen, The Netherlands
{gkoningg,flaviog}@cs.ru.nl

Abstract. Even though RFID technology has expanded enormously,
this expansion has been hindered by privacy concerns. In order to pre-
vent an adversary from tracking RFID tags and thus breaking location
privacy, tags have to update their internal state with every authenti-
cation attempt. Although this technique solves the privacy problem, it
has the side effect that tags and back office might desynchronize. This
desynchronization can be caused by physical conditions or by adversarial
intervention. If we look at consumer product identification, RFID labels
and barcodes are bound to coexist for quite some time. In this paper we
exploit this coexistence to reduce the workload at the reader/backoffice
and allow re-synchronization. Concretely, we propose an authentication
protocol that achieves correctness, forward-privacy under mild additional
assumptions and synchronization in the random oracle model.

Keywords: RFID, barcodes, location privacy, forward-privacy, random
oracle model.

1 Introduction

Over the last few years, the use of RFID technology has expanded enormously.
It is currently deployed in electronic passports, tags for consumer goods, public
transport ticketing systems, race timing, and countless other applications.

RFID technology have recently become popular as a replacement for
traditional barcodes in the consumer supply chain. Even though RFID labels
have indeed advantages over barcodes, they also have some drawbacks. On
the one hand, RFID labels can be read faster than barcodes and have less
restrictions on the physical positioning of the label. These advantages do not
necessarily imply that barcodes will be replaced by RFID labels and are no
longer needed. It is still useful to have some backup identification possibility. For
� Partially supported by the research program Sentinels (www.sentinels.nl), project

PEARL (7639). Sentinels is being financed by Technology Foundation STW, the
Netherlands Organization for Scientific Research (NWO), and the Dutch Ministry
of Economic Affairs.

S.B. Ors Yalcin (Ed.): RFIDSec 2010, LNCS 6370, pp. 203–219, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.sentinels.nl

204 G. de Koning Gans and F.D. Garcia

instance, when an RFID label breaks down it is still possible to switch to barcode
identification. Barcodes are often printed right on the product (wrapping) and
therefore are currently cheaper than an RFID label. Furthermore, the barcode
system is deeply entrenched in many systems and complete replacement is not
going to happen in the near future [WNLY06]. Actually, barcodes and RFID
systems have to be used in parallel for many more years. On the other hand, the
widespread use of RFID has raised various privacy concerns. Since most RFID
tags will send a unique identifier to every reader that attempts to communicate
with it, an adversary could build an “RFID profile” of an individual, i.e., the
collection of unique identifiers of the RFID tags that the individual usually car-
ries. This profile could be used to track this person, or to infer behavior such as
spending or traveling patterns, jeopardizing this person’s privacy.

If we focus on inexpensive EPC-like tags, think of the ones attached to a
product in the supermarket, we observe that RFID tags are often used in parallel
with barcodes, instead of replacing them. The combination of barcode and RFID
label can be found on several products nowadays. Figure 1 shows an example of
such a tag.

In this paper we exploit this duality by using a combination of barcode and
RFID labels in order to get the best of each technology. On the one hand,
flexible reading and unique identification, on the other hand the infeasibility
for an adversary to track goods at will. We present a practical solution where
both RFID label and barcode are combined in order to provide location privacy.

Fig. 1. Barcode and RFID label

Many privacy notions have been discussed
in the literature but the notion of for-
ward privacy is generally considered satisfac-
tory [Vau07,BBEG09]. This privacy notion
requires that an adversary who has control
over the communication media should not
even be able to tell whether two protocol
instances involve the same tag or not. More-
over, even when all secret information in the
tag is revealed to the adversary, this should
not be able to link this tag with previously
recorded protocol runs. In order to achieve
such a strong security notion, it is necessary that the tag updates its state
(using a one-way function) with every authentication attempt. This continuous
updating might lead to desynchronization between the back office and the tag.
This desynchronization can be both, induced by an adversary or simply due to
physical conditions like the distance between tag and reader.

Related Work. A large number of protocols have been proposed in the
literature that aim to achieve location privacy [JW05, Tsu06, BdMM08] and
concretely forward-privacy [OSK +03,Vau07,BBEG09]. Unfortunately, many of
these proposals turn out to be either impractical due to the resource-constrained
nature of RFID or suffer from desynchronization. Achieving forward privacy

Towards a Practical Solution to the RFID Desynchronization Problem 205

without using public key cryptography has shown to be a very challenging task.
In fact, Vaudenay [Vau07] showed that having a forward private stateless RFID
scheme implies key agreement, which is believed to be require public-key cryptog-
raphy. Achieving forward-privacy with symmetric cryptography requires heavy
workload on the reader side and these protocols often suffer from desynchro-
nization. A distinguished example is due to Avoine [AO05], who proposed a
scheme based on OSK [OSK +03] that achieves forward-privacy. Unfortunately
this protocol suffers from desynchronization which has impact on availability.
The scheme of Dimitriou [Dim05] is reminiscent of the Hash-Locking scheme
of Weis [WSR +04] but it also suffers from desynchronization. For a complete
survey of related work we refer the reader to [Jue06].

Our Contribution. This paper proposes a forward private RFID authentica-
tion protocol that incorporates a mechanism for re-synchronization. We exploit
the coexistence of RFID and barcodes in the protocol design in order to achieve
a more efficient search procedure on the reader side. The main idea of the proto-
col resembles that of OSK, except that we allow a limited and small number of
failed authentication attempts. This reduces dramatically the search space on the
reader side. Should this limit be exceeded, then the barcode allows the protocol
to re-synchronize. This re-synchronization takes place within the authentication
protocol itself so that it does not compromises privacy.

We propose a model for RFID privacy using provable security techniques,
following the lines of [Avo05, Vau07, JW09, GvR10]. Within this model we de-
fine correctness, forward-privacy and synchronization. Finally, we show that our
protocol satisfies all these security notions using the random oracle methodology.

Organization of the Paper. In Section 2 we briefly explain the desynchroniza-
tion problem. Section 3 describes the system and adversarial models. Section 4
then provides definitions for security, (forward-)privacy, (strong-)correctness and
desynchronization. Section 5 describes our protocol and Section 6 substantiates
the security claims. Finally, Section 7 concludes the paper and discusses future
work.

2 The Desynchronization Problem

Our goal is a practical RFID protocol that provides location privacy. The mean-
ing of the adjective “practical” heavily depends on the resources and restrictions
that are given. A good first attempt is the following protocol where a tag T
sends the hash of its identity id concatenated with some random value r and r
itself to a reader R.

T→ R : h(id, r), r

Assuming a perfect hash function and random number generator it is impossible
for an eavesdropper to retrieve the identity id. This small protocol is more or
less what was proposed as the Randomized Hash-Locking scheme by Weis et al.

206 G. de Koning Gans and F.D. Garcia

in [WSR +04]. The reader is connected to a back-end where a database is main-
tained with all tag identities. The big drawback in this solution is in the search
procedure. To look up a tag every identity needs to be hashed in combination
with the random r. This drastically reduces the applicability of this solution to
small systems with a limited number of tags.

Another well-known RFID protocol from the literature is OSK [OSK +03]
where the tag identifiers are updated in every protocol run regardless whether it
was a successful run or not. This is done by a hash chain where hi(x) means that
x is successively hashed i times. In [CC08] it is shown that the OSK scheme is
synchronizable since DR = ∞, DT = 0, RR = ∞ and RT = 0. This illustrates
the fact that a resynchronizable protocol is not automatically efficient in its
search procedure. For instance, a denial-of-service attack (DoS attack) might be
induced by simply sending a random value to the reader.

Barcode Analogy. The protocol that is introduced in this paper can be best
explained in analogy to the traditional and very successful barcode. RFID is
used to automatically identify products and to process the gathered data. This
can be used to track products along the supply chain in industry [Att07], the
medical sector [WCO+07], libraries [MW04] and many other situations where
barcodes are already employed.

A well known daily example of barcodes can be found in a shop. The cashier
scans the barcodes of products that the customer wants to buy. From time to
time the scanner might not be able to read a barcode. In such cases the cashier
enters the serial number by hand using a keypad. This backup procedure costs
more time and effort, but at the end the checkout procedure is far more efficient
than it would be when every product was entered manually at default.

The number of times that the cashier has to fall back to the manual input
procedure is very low. If this was not the case, the use of barcodes would be ques-
tionable. Actually, we face the same problem in privacy friendly RFID. Here, the
tag and reader need to stay synchronized in some way. To the best of our knowl-
edge, all attempts to design a protocol that keeps up with these discrepancies
try to achieve this without any human intervention. Many proposals try to pre-
vent desynchronization purely by means of the wireless link. This becomes a
very hard task when, at the same time, an adversary is allowed to exhaustively
query a tag. In practice desynchronization is a problem that should be handled,
merely because it may also occur due to physical problems in the reading pro-
cess. Now, recall the same shop as mentioned before but let the products be
equipped with RFID tags. When a tag is no longer synchronized with a genuine
reader and the system fails to identify a tag, we fall back to the use of a second
channel which provides the reader with the needed identity. This identity can
then be read from a barcode or serial number which is physically printed on the
RFID tag. A protocol run in which a second channel is used to synchronize the
tag and reader state is called a synchronization run. Since a synchronization run

Towards a Practical Solution to the RFID Desynchronization Problem 207

involves additional actions apart from running the protocol it can be treated
as a special instance of the protocol. In general, these special instances occur
scarcely in practical settings. In this paper we further elaborate on a system like
presented above.

3 System Model

Consider a scheme where readers have a secure communication channel with the
back office. We assume that readers are single threaded, i.e., can only have one
active protocol instance with a tag at a time. After running a protocol with a tag,
the reader has an output that is typically the identity of the tag. New readers
and tags can be added to the system at will. The formal definition follows.

Definition 1 (RFID scheme). An RFID scheme Π consists of:

– a probabilistic polynomial-time algorithm SetupSystem that takes as input
the security parameter 1η and outputs the public key pair (sk, pk) of the sys-
tem.

– a probabilistic polynomial-time algorithm SetupReader that takes as input
the secret key of the system sk and outputs the initial state of the reader s
and the reader’s secret k.

– a probabilistic polynomial-time algorithm SetupTag that takes as input the
secret key of the system sk and outputs the initial state of the tag s and the
tag’s secret k.

– a polynomial-time interactive protocol between a reader and a tag, where the
reader returns Output. Output is typically the identity of the tag.

An adversary is a probabilistic polynomial-time algorithm that interacts with
the system by means of different oracles. The environment keeps track of the
state of each element in the system and answers the oracle queries according to
the protocol. Besides adding new tags and readers to the system and being able
to communicate with them, an adversary can also corrupt tags. This models
techniques like differential power analysis and chip slicing. By corrupting a tag
an adversary retrieves its internal state.

Definition 2 (Adversary). An adversary is a probabilistic polynomial-time
algorithm that takes as input the system public key pk and has access to the
following oracles:

– CreateReader(R) creates a new reader by calling SetupReader(sk) and up-
dates the state of the back-office. This new reader is referenced as R.

– CreateTag(T) creates a new tag T by calling SetupTag(sk) and updates the
state of the back-office. This new tag is referenced as T .

– CorruptTag(T) returns the internal state s of the tag T .
– Launch(R) attempts to initiate a new protocol instance at reader R. If R

has already an active protocol instance then Launch fails and returns zero.
Otherwise it starts a new protocol instance and returns one.

208 G. de Koning Gans and F.D. Garcia

– Send(m, A) sends a message m to the entity A and returns its response m′.
The entity A can either be a reader R or a tag T .

– Result(R) outputs whether or not the output of the last finished protocol
instance at reader R is not ⊥, i.e., Output �= ⊥.

Definition 3. We denote by O the set of oracles {CreateReader, CreateTag,
CorruptTag, Launch, Send, Result}.

4 Security Definitions

This section elaborates on the security and privacy definitions from the literature,
much of it is standard.

The main goal of an RFID system is security, which means that readers are
able to authenticate legitimate tags. Throughout this paper we focus on privacy.
For the sake of self containment, we include here the following security definition
which is an adapted version of the security definition proposed in [Vau07].

Definition 4 (Security). An RFID scheme is secure if for all adversaries A
and for all readers R, the probability that R outputs the identity of a legitimate
tag while the last finished protocol instance at reader R and this tag did not have
any matching conversation, is a negligible function of η. Matching conversation
here means that R and the tag (successfully) executed the authentication protocol.

Next we define privacy composing the definitions of Juels and Weis [JW09]
and Vaudenay [Vau07] since each of them has its advantages: the former is
indistinguishability based, which makes it more practical; the latter has the
drawback of being simulation based but is stronger and allows for a variety
of adversaries with custom capabilities. Privacy is defined in an IND-CCA like
fashion where the adversary tries to win the privacy game. In this game, the
environment creates system parameters by calling SetupSystem. Then it gives
the public key of the system pk to the adversary A0. This adversary has access
to the set of oracles O. Eventually, A0 must output two uncorrupted challenge
tags T �

0 and T �
1 . Then, the environment chooses a random bit b and gives the

adversary A1 access to T �
b . At this point, the original references to T �

0 and T �
1

are no longer valid. Again, the adversary has access to all oracles O. Finally, the
adversary outputs a guess bit b′. The adversary wins the game if b = b′. The
formal definition follows.

Definition 5 (Privacy game).

Priv-GameΠ,A(η) :
(sk, pk)← SetupSystem(1η)
T �

0 , T �
1 ← AO

0 (pk)
b← {0, 1}
b′ ← AO

1 (T �
b)

winif b = b′.

Towards a Practical Solution to the RFID Desynchronization Problem 209

The challenge tags T �
0 and T �

1 must be uncorrupted, which means that no
CorruptTag(T �

{0,1}) query has been made. Adversaries implicitly pass state.

In general, it is hard to define a realistic adversarial model as different
applications have different requirements. Following the lines of Vaudenay [Vau07],
we consider different classes of adversaries depending on their capabilities. The
notions of forward, weak and narrow adversaries are due to Vaudenay. The no-
tion of thin adversary is introduced in this paper to handle protocols that use
a second channel. Intuitively, a forward adversary is an adversary that observes
communication between tags and readers and later on acquires one of these tags
and tries to link it with some of the past sessions, compromising its privacy. If
the adversary succeeds to do so, with non-negligible probability, we say that is a
winning adversary. A weak adversary is an adversary that is unable to corrupt
tags. In real life scenarios it is often realistic to assume that an adversary can
see the outcome of an authentication attempt. For instance, this is the case of
transport ticketing systems where an adversary could observe whether the gate
of the metro opens or not, for a specific tag. An adversary that is unable to
do so is called narrow. In line with the narrow adversary we introduce the thin
adversary. A thin adversary cannot see additional information that is provided
to the reader. Think for example of additional identifying information to make
the search procedure more efficient.

Definition 6 (Types of adversaries). A forward adversary is an adversary
that has access to all oracles O. A weak adversary cannot perform any
CorruptTag query at all. A narrow adversary does never query the Result oracle.
Finally, we introduce the notion of thin adversary which, like the narrow adver-
sary, does never query the Result oracle. Furthermore, a thin adversary cannot
see synchronization runs and thus cannot see protocol runs where information is
used that is obtained by the second channel.

Remark 1. Note that this notion of forward adversary is stronger than the one
proposed by Vaudenay and closer to the notion of Juels and Weis.

Definition 7 (Privacy). Let C be a class of adversaries in {forward,weak,
narrow, thin}. An RFID scheme is said to be C-private if for all probabilistic
polynomial-time adversaries A = (A0,A1) ∈ C

P[Priv-GameΠ,A(η)]− 1
2

is a negligible function of η.

In our definition of desynchronization we follow [CC08]. Consider a valid tag
which is referenced by id. Let its corresponding key k be denoted kid. Every tag
is initialized by SetupTag using the initial key k0

id. Then, ki
id denotes the tag key

after i updates. Since both reader and tag keep track of their own instance of kid,
we write rkid for the reader instance and tkid for the tag instance of kid. Usually,
rkid = tkid = k∗

id, but when the tag and reader are no longer synchronized we

210 G. de Koning Gans and F.D. Garcia

have tkid = ki
id and rkid = kj

id where i �= j. In order to allow reasoning about
desynchronization, first correctness is defined, then the definition of a strong cor-
rectness game follows. In its turn this game is used to define strong correctness.
Finally, it is defined when an RFID scheme can be subject to desynchronization.

Definition 8 (Correctness). An RFID system is said to be correct when the
reader outputs ⊥ after an authentication protocol π with a non-legitimate tag
and outputs the tag id after an authentication protocol π with a legitimate tag.

The Strong Correctness Game is comparable to the Privacy-Game and its
setup is also indistinguishability based. Again, the challenger generates system
parameters by calling SetupSystem. Then, the public key pk is given to an
adversaryA which has access to the set of oraclesO. At some point A outputs an
uncorrupted challenge tag T �. Then, the environment runs the authentication
protocol with T �. This yields an output ⊥ when the tag was not recognized
as legitimate or an identifier id when a legitimate tag was found. Finally, the
adversary wins if the reader outputs ⊥ and cannot identify T �.

Definition 9 (Strong Correctness Game).

Strong-Corr-GameΠ,A(η) :
(sk, pk)← SetupSystem(1η)
T � ← AO(pk)
Execute(R�, T �)
b← Result(R�)
winif b = 0.

where Execute(R, T) runs the authentication protocol between the reader R and
the tag T . The challenge tag T � must be uncorrupted, which means that no
CorruptTag(T �) query has been made.

Definition 10 (Strong Correctness). Let C be a class of adversaries in
{forward,weak,narrow, thin}. An RFID system is said to be C-strong correct
if for all probabilistic polynomial-time adversaries A ∈ C

P[Strong-Corr-GameΠ,A(η)] − 1
2

is a negligible function of η.

Definition 11 (Key shifts). A key shift in an RFID scheme is the increment
of |i− j| by 1 for an arbitrary tag T with tki

id and reader R with rkj
id. The value

|i− j| ∈ N is called number of key shifts.

Remark 2. Note that our definition of key shift corresponds with the definition
of desynchronization in [CC08]. We prefer to define desynchronization as the
case where synchronization between a tag and reader is no longer possible.

The desynchronization value is a pair (DR, DT) where DR is the maximum
number of key shifts j− i with rki

id �= tkj
id and i < j, while DT is the maximum

Towards a Practical Solution to the RFID Desynchronization Problem 211

number of key shifts i − j with rki
id �= tkj

id and i > j. Correspondingly, the
resynchronization value is a pair (RR, RT) where RR and RT are the maximum
number of possible key shifts after which the RFID system still is strong correct.
An RFID scheme is said to be synchronizable when both DR ≤ RR and DT ≤
RT .

Definition 12 (Desynchronization). An RFID scheme is subject to desyn-
chronization when DR > RR or DT > RT .

5 Protocol Description

This section introduces a protocol that exploits the use of a second channel to
achieve thin-forward privacy. The protocol should not be subject to desynchro-
nization. Even when a tag is queried an unbounded number of times, this should
not result in a denial-of-service (DoS) or in identification failure. First, we briefly
elaborate on the notion of second channel that we use, then we define the tag
and reader state in this protocol, and finally we discuss the protocol itself.

Second Channel. The protocol uses a second channel which is a channel
between the tag and reader that allows a tag to send its tag identity to the
reader. This channel uses other physical means than the wireless link and is
therefore out of the scope of a narrow adversary. Like narrow adversaries can-
not perform the Result query [Vau07], i.e. cannot learn outgoing messages on
channels other than the wireless link, they cannot learn incoming messages that
are sent on channels other than the wireless link. An example of an outgoing
message on a second channel is for instance a door that opens when a tag is
successfully authenticated. An example of an incoming message is for instance
a barcode scanner or keypad connected to an RFID reader that communicates
the tag identity to the reader. Of course, this identity still needs to be verified
by the reader using the wireless link. The second channel speeds up the search
process at the reader side when the tag and reader keys are relatively shifted. It
does not replace the wireless link.

Tag and Reader State. In order to keep track of all the state changes and
achieve an RFID system that cannot be desynchronized, the state is managed
as follows. First we introduce some notation.

Notation Meaning
id The tag identifier
k The session key; this key is updated in every protocol run
k̃ The synchronization key; for tag-reader synchronization
hi(x) i times successively hashing of x

Every tag is identified by an identifier id, but this identifier is not part of the tag
state. However, a reader needs to relate this tag state somehow to the identifier
of the tag. The tag state consists of a session key k and a synchronization key k̃.

212 G. de Koning Gans and F.D. Garcia

This pair of keys (k, k̃) uniquely identifies a tag and thus can be related to id.
The session key is updated in every protocol run, while the synchronization key
is only updated after an authenticated message from the reader. A tag always
starts to execute an internal key update before it sends any message to the outer
world. The purpose of k̃ is to allow synchronization between the tag and reader.
Finally, it should be possible to extract the identity id from the tag using a second
channel. For example, the identity id can be printed on the tag as a barcode,
which allows a barcode scanner to send id over the second channel. The reader
state contains, apart from k and k̃, also the tag identifier id. To distinguish the
keys in the reader state from the keys in the tag state we write rkid, rk̃id and
tkid, tk̃id, respectively. There are two ways in which the reader identifies a tag.

– The reader pre-computes h(hi(rkid), nr) for all i < N , all tag ids, and some
nonce nr. Now, identification is a look-up in its pre-computed table (See
Tables 1 and 2).

– The reader obtains the identity id by use of a second channel. Now, id allows
the reader to look up the synchronization key rk̃id, which in its turn is used
to induce synchronization of the tag and reader state.

The first way solely uses the wireless link whereas the latter way also uses the
second channel. The synchronization is needed when the tag’s session key is
beyond the scope N of the reader. It allows a reader to quickly frame which tag
it is targeting.

The protocol design is such that after a synchronization attempt of the reader
a tag could either update its synchronization key or not. Depending on the
situation there are two tag states possible. Therefore, the reader keeps track
of two states for each tag simultaneously. The next protocol run in which this
particular tag participates resolves then which of the two states is valid. In
Table 1 and 2 the two states are captured by the record status st, which can
either be ‘old’ (O) or ‘new’ (N). This makes the reader state consist of at most
two tuples (id, st, k, k̃) per tag.

Table 1. Reader Database

id Status st Key k Sync Key k̃ Identifier 1 . . . Identifier i

id1 O k1 k̃1 h(h1(k1), nr) . . . h(hi(k1), nr)

id1 N k′
1 k̃′

1 h(h1(k′
1), nr) . . . h(hi(k′

1), nr)

id2 O k2 k̃2 h(h1(k2), nr) . . . h(hi(k2), nr)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

idn N kn k̃n h(h1(kn), nr) . . . h(hi(kn), nr)

Table 2. Look-up

Identifier id st

h(h1(k1), nr) id1 O
h(h1(k′

1), nr) id1 N
h(h2(k1), nr) id1 O
h(h2(k′

1), nr) id1 N

.

.

.
.
.
.

.

.

.
h(hi(k1), nr) id1 N
h(h1(k2), nr) id2 O
h(h2(k2), nr) id2 O

.

.

.
.
.
.

.

.

.
h(hi(k2), nr) id2 O

Towards a Practical Solution to the RFID Desynchronization Problem 213

Precomputation and State Resolution. Two important questions need to
be answered. First, how can the reader construct a precomputed table for look-
up while a random nonce nr is used in the protocol of Figure 2. Second, how can
the number of possible tag states be limited in such a way that state resolution
is always possible.

The reader state is stored as shown in Table 1. For every tag the reader
precomputes the identifiers h(hi(rkid), nr) for all i < N . In practice, N = 3
might already be a good choice to withstand desynchronizations that occur due
to bad physical circumstances. Since the reader cannot know id in advance, all
nonces nr in the precomputed table need to be the same. During idle time the
reader can precalculate several tables as shown in Table 1 for different values
nr. A different representation of Table 1 is given by Table 2.

When a synchronization run is needed, first the identifier id is obtained by
using the second channel. Then, the reader executes a synchronization run, im-
mediately followed by a normal run. This second run makes clear whether the
key update on the tag side was successful or not. If it was successful the reader
is able to lookup the tag identifier in the database. However, in case of a failure
run it is unclear whether the update was successful but the second run failed, or
if the update already failed in the first place. For both scenarios the reader keeps
a record corresponding to id, namely O and N. In order to prevent desynchro-
nization on this level, this specific tag can be labeled as ‘suspicious’ to indicate
that something went wrong in the synchronization run. The tag needs then to
be synchronized in a safe environment. Every other attempt of a reader to syn-
chronize would potentially leak location information to an adversary and should
therefore not be executed.

Success, Failure and Synchronization Run. This section discusses the suc-
cess, failure and synchronization run. The authentication protocol is depicted in
Figure 2. The success run is a protocol run in which a reader is able to success-
fully identify a tag and updates the identifiers in the database accordingly. This
update might just concern the next identifier k, or update the synchronization
key k̃ as well. Whenever a reader fails to identify a tag, the corresponding proto-
col run is called a failure run. After a failure run, the reader needs to be provided
with the tag identifier id using a second channel. Now, id can be used to select
the tag in the database and find the corresponding synchronization key k̃ which
can be used to execute a synchronization run and update both k and k̃. The
idea behind the different run types is that they look the same to an adversary.

A success run starts with a challenge nonce nr. Under all circumstances,
the tag computes the successive tag key k ← h(k) before it sends any mes-
sage. This key updating is done regardless of the number of requests that are
made. After this phase, the identifier m1 is sent, which directly depends on k as
m1 ← h(k, nr). Due to this dependence on k, the successive tag identifiers might
run beyond the identifiable scope N of the reader. Since a reader cannot continue
to search for an identifier forever, N determines the maximum number of key
updates considered in a look-up attempt. In the success run we consider a lookup

214 G. de Koning Gans and F.D. Garcia

successful when it is of the form ∃(id, k) ∈ T, i ≤ N : h(hi(k), nr) = m1. The
corresponding identity id, key k and resynchronization key k̃ of the tag are
resolved, which completes the identification of the tag. For similarity reasons,
the reader finishes by sending a random m2 message.

The failure run starts like every run with a challenge nr. In its turn, the
tag first computes the next tag key k ← h(k) before any message is sent. In
contrast to a success run, the reader is unable to resolve the tag’s identity from
message m1. Since m2 can be a random message, the reader is still able to finish
the protocol, as it is designed to show equal behavior in every run. However,
identification was unsuccessful and thus the reader has to obtain the tag identifier
id by using a second channel, e.g. the id could also be available as a barcode on
the RFID label. Of course, the adversary can obtain id as well, but the tracking
effort per tag is relatively large compared to the tracking of RFID labels with
fixed identifier. Hence, this protocol reduces the problem of tracking RFID labels
to the problem of tracking barcodes.

Finally, the synchronization run is used once the identifier id is obtained by the
reader. The identifier id can be provided over the second channel and allows the
lookup of k and k̃, which are used later on in this run. Again, the reader starts the
protocol by sending a nonce nr. The tag computes m1 ← h(k, nr) and updates
the tag key k ← h(k), then it sends m1 which is used as unpredictable input for
the last message m2. By m2 the reader proves knowledge of the synchronization
key k̃ to the tag. This time, m2 is constructed from m1 and k̃ as m2 ← h(m1, k̃).
The tag knows k̃ and can therefore check the validity of m2. If it is indeed a valid
message, the tag updates the tag key k ← h(k̃, m1) and the synchronization key
k̃ ← h(k̃).

Reader Tag

state: k, k̃state: T = [id, k, k̃]

nr ← {0, 1}l nr �
m1 ← h(k, nr)
k ← h(k)

m1�
∃(id, k) ∈ T, i ≤ N :

h(hi(k), nr) = m1

then m2 ← {0, 1}l
k← hi(k)

else m2 ← h(m1, k̃) m2 �

if h(m1, k̃) = m2

then k ← h(k̃, m1)
k̃ ← h(k̃)

Fig. 2. The Protocol

Towards a Practical Solution to the RFID Desynchronization Problem 215

6 Security Analysis

This section analyzes the security of the proposed protocol in the random oracle
model. In the resynchronization run the last message m2 of the protocol leaks
location information. For this reason, and in general because forward privacy
cannot be achieved for any type of synchronized symmetric protocol construc-
tion [NSMSN09], we use the slightly more restricted thin adversary. First, we
show that our protocol is thin-forward private. Then we show that the protocol
is not subject to desynchronization.

Theorem 1. The protocol depicted in Figure 2 is thin-forward private in the
random oracle model.

The proof closely follows the narrow-forward privacy proof of modified OSK
in [GvR10]. In short, it introduces a simulator S which keeps track of all oracle
calls H and stores them as an entry of the form 〈in,out〉 in a table TH. Then,
TH is adapted such that the protocol messages and thus the resulting view of
a particular adversary A1 remain the same while the keys, and thus the tag
identities, are swapped. This leads to a contradiction.

Proof (Sketch). Suppose there exists an adversary A = (A0,A1) that wins the
Priv-GameΠ given in Definition 5 with non-negligible probability. Then, imag-
ine a simulator S that first initializes the system and then runs the adversary
A0. Every oracle call of A0 to the oracle H is simulated as usual by a table TH
which contains all previous queries with their corresponding answers. At some
point A0 finishes and chooses two tags T ∗

0 and T ∗
1 . Let (k0, k̃0) be the key pair

of T ∗
0 and (k1, k̃1) be the key pair of T ∗

1 after they are returned by A0. As in
the game, S will draw a random bit b. Next, S runs AO

1 (T ∗
b) which at some

point outputs a guess bit b′. By hypothesis we get that b′ = b with probability
significantly higher than 1

2 . By † we identify the predecessor value of a key, so the
predecessor of k0 is k†

0. Now S swaps all occurrences of k0 with k1 in all entries of
TH. Note that either the entry 〈h(k̃†

0,), k0〉 or the entry 〈h(k†
0), k0〉 is present in

TH. The first one occurs when the last update of k was in a synchronization run.
The latter one occurs when the last update of k was in a non-synchronization
protocol run. The replacement of k0 by k1 and vice versa does not affect the
protocol messages since k0 and k1 are not involved in any protocol messages
after the oracle call entries defined above. Furthermore, m2 ← h(m1, k̃) is the
only message that involves k̃ and only occurs in a synchronization run. Since A1

is thin, it is clear that k̃ does not have any influence on the view of the adversary.
Now, S runs adversary AO

1 (T ∗
1−b) with the adjusted TH. Again by hypothesis,

we get that A1 outputs b′ = 1 − b with probability significantly higher than 1
2 .

Since A1 is thin, its view is exactly the same as in the previous run, which leads
to a contradiction.

Theorem 2. The protocol depicted in Figure 2 is not subject to desynchronization
in the random oracle model.

216 G. de Koning Gans and F.D. Garcia

Proof (Sketch). In order to show that desynchronization is impossible we have
to show that both DR ≤ RR and DT ≤ RT hold. The tag state is the tuple
(k, k̃). First, k is always updated, k̃ is only updated after a synchronization run.
Therefore, we focus k̃ to induce key shifts since only then a desynchronization
is possible. From the protocol definition we deduce that DR = RR = 1 since a
reader only starts a synchronization run when it was able to look up k̃ in one
of the two possible tag states. Furthermore, we know that DT = 0 from which
follows that DT ≤ RT since RT has to be positive. Suppose that either DR > RR
or DT ≤ RT is true, then there exists an adversary A that wins the Strong-
Corr-GameΠ given in Definition 9 with non-negligible probability. This means
that A outputs a tag T � with key tk̃i while the reader has no matching key
rk̃j−1 or rk̃j , since i �= j − 1 and i �= j has to be true. There are two ways for
the adversary to achieve this:

i > j : The tag key is updated (i − j)-times more than the reader key.
The only way to induce a key update on the tag side is to construct the
message m2 = h(m1, k̃). Because of the one-wayness of h and since the
adversary cannot call CorruptTag, the key k̃ is not known and it is impossible
to construct m2 for the adversary. Only the reader R is able to construct
m2 = h(m1, k̃), but inherent to this generation of m2 is the storage of the
new reader keys (rkj+1, rk̃j+1) while at the same time the old keys (rkj , rk̃j)
are maintained. The last option would be a replay of m2, but this is rendered
impossible by the use of nr in m1, and thus in m2, which introduces freshness
in every protocol run. To conclude, it is not possible to obtain i > j.
i < j − 1 : The reader key is updated (j − i)-times more than the tag key.
By hypothesis we know that i < j − 1 since i �= j, i �= j − 1 and i ≯ j as
concluded in the previous case. Let i = j, the only way to update rk̃j to
rk̃j+1 comes with the generation of m2 = h(m1, k̃). If m2 is received by the
tag it will update its key from tki to tki+1 and consequently i = j again.
Obviously, to prevent incrementation of i is to block or replace m2 since then
the tag does not update its key and as a result i = j−1. Next, the adversary
needs to go one step further since the reader is still able to identify the tag
(tk̃i = rk̃j−1). To induce another reader key update, the reader has to be
provided with the tag identifier id by using the second channel. When the
last synchronization attempt turned out to be unsuccessful, which is stored
in the reader state belonging to id, the reader just sends random data for m2.
In this situation resynchronization has to be done in a safe environment. The
tag state either contains tk̃i when in the last synchronization attempt m2

was blocked or the tag state contains tk̃i+1 when the last synchronization run
was successful. In the latter case the reader is able to identify the tag since it
knows rk̃j which equals tk̃i+1, respectively. To conclude, the adversary needs
to induce a synchronization run, which can be done by first querying the tag
more than N times. Then, before the reader starts a synchronization run it
retrieves id. By looking up the correct entry using id the reader has enough
information to decide on the execution of another synchronization run. If
the last attempt was unsuccessful this indicates that something suspicious is

Towards a Practical Solution to the RFID Desynchronization Problem 217

going on and resynchronization should be done in a safe environment. If the
last attempt was successful the reader is sure that i = j. So, max(|i− j|) = 1
where i < j, which is not enough to satisfy i < j − 1.

Finally, from the two possible strategies to win the Strong-Corr-GameΠ we
conclude that both i > j and i < j−1 cannot be satisfied, therefore contradicting
the assumption that such an adversary A exists.

7 Conclusion

This paper presents a new approach to tackle the desynchronization problem.
This desynchronization problem is actually an unwanted side effect of a solu-
tion to another problem: location privacy for RFID tags. Many solutions tend
to solve this problem by introducing a stateful protocol. A main challenge of
these protocols is to keep the tag and reader state synchronized while at the
same time no information can be leaked that enables an adversary to track a
specific tag. To the best of our knowledge there have been no attempts to seek
the solution beyond the bounds of the wireless link. In line with the abilities
of a narrow adversary, introduced by Vaudenay in [Vau07], in which an adver-
sary is unable to see the result of a protocol run like a gate that opens, this
paper proposes to use this information flow also in the opposite direction. This
means that additional information is made available to the reader which it can
use to identify and resynchronize with the tag. A narrow adversary does not
have access to this information since it is not send on the wireless link but some
other communication channel which is introduced in this paper as the second
channel. This paper adds some mild restrictions to the narrow adversary and
introduces this as the thin adversary which is needed to prove forward-privacy
under mild additional assumptions. Suppose that barcode scanners are used as
second channel and RFID tags are additionally equipped with barcodes. Addi-
tionally, assume a protocol P that uses the second channel such that it provides
thin-forward privacy and is not subject to desynchronization. Then, tracking
tags in this system has become as hard as tracking barcodes.

The second channel can be used in new protocol designs and relaxes the
workload of the reader and/or database. It allows to solve the desynchronization
problem in an elegant way and eliminates the need for restrictions on the number
of key updates that can be induced by an adversary between two synchroniza-
tions. In order to show that such a protocol can be constructed we proposed
a protocol that only uses hash functions. We have shown that it it provides
thin-forward privacy in the random oracle model. Furthermore, we followed the
desynchronization definition of [CC08] to show that the protocol is not subject
to desynchronization.

We are currently working on the formalization of the security claims in
Proverif, following the direction of [BCdH10]. This task turned out to be non-
trivial due to the fact that our protocol is state-full.

218 G. de Koning Gans and F.D. Garcia

Acknowledgments

We like to thank the anonymous reviewers of this paper for their valuable
comments.

References

[AO05] Avoine, G., Oechslin, P.: A scalable and provably secure hash based RFID
protocol. In: International Workshop on Pervasive Computing and Com-
munication Security, PerSec 2005, pp. 110–114 (2005)

[Att07] Attaran, M.: RFID: an enabler of supply chain operations. Supply Chain
Management: An International Journal 12(4), 249–257 (2007)

[Avo05] Avoine, G.: Adversary Model for Radio Frequency Identification. Techni-
cal Report LASEC-REPORT-2005-001, Swiss Federal Institute of Tech-
nology (EPFL), Security and Cryptography Laboratory (LASEC), Lau-
sanne, Switzerland (September 2005)

[BBEG09] Berbain, C., Billet, O., Etrog, J., Gilbert, H.: An efficient forward private
RFID protocol. In: Proceedings of the 16th ACM conference on Computer
and communications security,CCS 2009, pp. 43–53. ACM Press, New York
(2009)

[BCdH10] Brusó, M., Chatzikokolakis, K., den Hartog, J.: Formal verification of pri-
vacy for RFID systems. In: Proceedings of the 23nd IEEE Computer Se-
curity Foundations Symposium (2010)

[BdMM08] Burmester, M., de Medeiros, B., Motta, R.: Anonymous RFID authen-
tication supporting constant-cost key-lookup against active adversaries.
Journal of Applied Cryptography 1(2), 79–90 (2008)

[CC08] Canard, S., Coisel, I.: Data synchronization in privacy-preserving RFID
authentication schemes. In: Conference on RFID Security (2008)

[Dim05] Dimitriou, T.: A lightweight RFID protocol to protect against traceabil-
ity and cloning attacks. In: Security and Privacy for Emerging Areas in
Communications Networks, SecureComm 2005, pp. 59–66 (2005)

[GvR10] Garcia, F., van Rossum, P.: Modeling privacy for off-line RFID systems.
In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010.
LNCS, vol. 6035, pp. 194–208. Springer, Heidelberg (2010)

[Jue06] Juels, A.: RFID security and privacy: A research survey. IEEE Journal on
Selected Areas in Communications 24(2), 381–394 (2006)

[JW05] Juels, A., Weis, S.: Authenticating Pervasive Devices with Human Proto-
cols. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308.
Springer, Heidelberg (2005)

[JW09] Juels, A., Weis, S.A.: Defining strong privacy for RFID. ACM Transactions
on Information and System Security (TISSEC) 13(1), 1–23 (2009)

[MW04] Molnar, D., Wagner, D.: Privacy and security in library RFID: Issues,
practices, and architectures. In: Proceedings of the 11th ACM conference
on Computer and Communications Security, pp. 210–219. ACM, New York
(2004)

[NSMSN09] Ng, C.Y., Susilo, W., Mu, Y., Safavi-Naini, R.: New Privacy Results on
Synchronized RFID Authentication Protocols against Tag Tracing. In:
Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, p. 321.
Springer, Heidelberg (2009)

Towards a Practical Solution to the RFID Desynchronization Problem 219

[OSK +03] Ohkubo, M., Suzuki, K., Kinoshita, S., et al.: Cryptographic approach to
privacy-friendly tags. In: RFID Privacy Workshop, Citeseer, vol. 82 (2003)

[Tsu06] Tsudik, G.: YA-TRAP: Yet Another Trivial RFID Authentication Proto-
col. In: International Conference on Pervasive Computing and Commu-
nications, PerCom 2006, Pisa, Italy. IEEE Computer Society Press, Los
Alamitos (March 2006)

[Vau07] Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASI-
ACRYPT 2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

[WCO+07] Wanga, S.W., Chenb, W.H., Onga, C.S., Liuc, L., Chuangb, Y.W.: RFID
applications in hospitals: a case study on a demonstration RFID project
in a Taiwan hospital. Hospitals 8, 33 (2007)

[WNLY06] Wu, N.C., Nystrom, M.A., Lin, T.R., Yu, H.C.: Challenges to global RFID
adoption. Technovation 26(12), 1317–1323 (2006)

[WSR +04] Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W., et al.: Security and
privacy aspects of low-cost radio frequency identification systems. LNCS,
pp. 201–212 (2004)

	Towards a Practical Solution to the RFID Desynchronization Problem
	Introduction
	The Desynchronization Problem
	System Model
	Security Definitions
	Protocol Description
	Security Analysis
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

